

RAAS

Robust and Autonomous Aerobraking Strategies

F. Cichocki M. Sanchez, C. Bakouche, S. Clerc, T. Voirin

presented by Davide Bonetti

DEIMOS Space S.L.U., Spain

- Introduction to RAAS
- Pericentre Altitude Control
 - New control corridor definition
 - Baseline & Correction Guidance
- Mission Operations Approach
 - Upload Interval Predictions
 - Upload Interval Real Time Operations
- Attitude GNC Modes and FDIR Strategies
- Validation campaign
 - Long-term validation results (Mission Analysis Simulator)
- Conclusions and way forward

Introduction to RAAS

What is the RAAS Project?

- Research project on aerobraking, financed by ESA and carried out by DEIMOS-Space and TAS-F with following major goals:
 - Define systematically aerobraking phases and constraints
 - Walk-In, Main Phase, Walk-Out
 - Design GNC algorithms and operations strategies enabling aerobraking missions with a certain autonomy and robustness
 - Autonomy of 1 week
 - Robustness to dust storms without interruptions of operations and to superior solar conjunctions with pop-up manoeuvres
 - Validate above algorithms and strategies with dedicated tools:
 - MAS: 3-DOF Mission Analysis Simulator for long-term validation of the orbit guidance algorithms and mission operations approach (DEIMOS-Space)
 - Hi-FAS: 6-DOF High Fidelity Analysis Simulator for short-term validation of the attitude GNC algorithms, mode management and FDIR strategies (TAS-F)

Main information sources on aerobraking techniques:

 Literature from past aerobraking missions (Mars Global Surveyor, Mars Odyssey, Mars Reconnaissance Orbiter)

Pericentre Control: Corridor Definition

Past missions approach:

- Constant corridors of peak dynamic pressure or heat flux
- Regular corridor updates during mission operations based on analysis of S/C thermal telemetry
 - Complex and resource demanding

Proposed approach:

- Corridor purpose:
 - Upper Boundary limits maximum solar array temperature
 - Lower Boundary guarantees a minimum dynamic pressure to achieve final orbit within a maximum amount of time
- Drag pass duration affects greatly thermal behaviour:
 - The higher the duration, the higher the array temperature (at a given peak heat flux)
- Proposed solution:
 - Off-line computation of corridors adapting to drag pass geometry:
 - 1-D Approach: Allowed band of peak heat flux as a function of apocentre altitude
 - 2-D Approach: Allowed region in peak heat flux-heat load plane

Pericentre Control: Baseline Guidance

Baseline Guidance Purpose:

 Compensate predictable orbit effects on a few days scale with ABMs at apocentre to raise/lower pericentre

Baseline Guidance Logic:

 Baseline ABMs ensure that the predicted control variables evolution during each control interval fulfills as much as possible the aerobraking corridor

Pericentre Control: Correction Guidance

Correction Guidance Purpose:

 Compensate autonomously onboard sudden density changes at pericentre (e.g. due to dust storms) on a short term

Correction Guidance Logic:

 Correction ABMs reproduce the baseline predicted evolution of control variables, whenever next pass onboard predicted control variables fall outside the control corridor

Logical Steps:

- Measure peak heat flux and update scale factor for predictions (3 days moving average of measurements)
- Predict next pass control variables with updated scale factor
- If predictions violate corridor, compute a correction ABM to reproduce baseline heat flux value

CORRECTION ABM EFFECT

Mission Operations Approach

- Two mission autonomy levels have been proposed:
 - Level 1: Ground Baseline
 Guidance, Onboard Correction
 Guidance
 - Level 2: Onboard Baseline & Correction Guidance
- Mission operations feature a loop of activities per upload interval:
 - Upload Interval Predictions:
 - Orbit predictions and baseline guidance (for autonomy level 1 only) to be uplinked to S/C
 - Upload Interval Operations:
 - Onboard algorithms execution, execution of ABMs and attitude switch manoeuvres, S/C tracking campaign

LOOP OF MISSION OPERATIONS ACTIVITIES (1 UPLOAD INTERVAL)

Upload Interval Predictions

Upload interval predictions are required to:

 Build a data package to be uplinked to S/C, which contains data necessary for the autonomous execution of onboard algorithms throughout the upload interval

Data package contains:

- Baseline guidance (only for autonomy level 1)
- Pericentre passes data (heat flux, heat load, altitude, scale height, epoch, inertial velocity) throughout upload interval

Upload Interval Real Time Operations

- During real time operations, the following algorithms are executed every orbit:
 - Pericentre Time Estimator
 - Autonomous update of in-orbit manoeuvres sequence
 - Atmosphere Estimation Function
 - Scale factor evaluation
 - Onboard Correction ABM Planner
 - Planning of correction ABMs
 - Onboard Baseline ABM Planner
 - Planning of baseline ABMs (only for autonomy level 2)
- Terminal Activities:
 - S/C tracking campaign to estimate state vector for next upload interval predictions

REAL TIME OPERATIONS LOOP

GNC and Attitude Control

Autonomous Mode Management

- GNC must perform several tasks within one orbit:
 - Drag pass attitude control
 - Pericentre altitude control manoeuvres at apocentre
 - Routine attitude control outside atmosphere
 - Reaction Wheels unloading
- Autonomous Mode Management
 - Three flags (guidance, navigation, control)
 - It allows to switch between functions to activate

Attitude Control in Atmospheric Pass

- Stable Configuration required
- Loose thrusters-based angular rate controller
 - Low fuel consumption
 - Use of disturbance torques to perform RWS unloading

Two FDIR levels:

- Safe Mode
 - Activated in case of Power alarm or Communication blackout
 - Aerobraking not suspended
 - Autonomous detection of atmosphere through IMU measurements
 - Maximum duration of 4 days (required orbit lifetime)

Automatic Pop-Up

- In case of thermal alarm, aerobraking is interrupted
- One single manoeuvre to raise the pericentre to 150 km
- Feasible in both normal mode and safe mode
- Risk of mission loss:
 - Solar Arrays are the most sensitive to temperature
 - Important loss of power → loss of mission but not immediate
 - Pop-Up necessary to avoid uncontrolled re-entry (forward contamination planetary protection requirement)
- Lower-level (consistency checks...) not defined in the frame of the study

Validation Campaign

RAAS validation campaign features:

- Long-Term Validation
 - Validation of mission operations design and pericentre control strategies throughout the whole aerobraking duration
 - Carried out with a Mission Analysis Simulator (MAS), featuring 3-DOF dynamics integration
- Short-Term Validation
 - Validation of attitude GNC algorithms, mode management and FDIR strategies
 - Carried out with a High Fidelity Analysis Simulator (Hi-FAS) featuring 6-DOF dynamics integration at 10 Hz
- Reference aerobraking scenario for validation:
 - Mars Sample Return like (aerobraking starts in Aug 2023)
 - Initial conditions: orbital period of 0.5 Sol, orbit inclination of 45°
 - S/C ballistic coefficient: 56.5 kg/m²
 - Walk-In phase: 2 weeks duration, 8 manoeuvres
 - Main Phase: 2-D Corridor, baseline ABM frequency < 0.5/day
 - **Walk-Out phase**: 600 x 600 km altitude target orbit, lifetime kept above 4 days with 1 ABM per day
 - Superior Solar Conjunction: safe orbit at 150 km altitude

Long Term Validation Campaign

Three sets of scenarios were run:

- Reference Scenario:
 - Assessment of pericentre altitude guidance performance with
 - Perfect knowledge of atmosphere and orbit evolution
- Montecarlo Scenario:
 - Statistical assessment of performance and robustness of proposed strategies in real mission scenarios, featuring:
 - Randomly perturbed atmospheres, ABM execution errors, onboard measurements errors, S/C state estimation errors etc...
- Worst Scenario:
 - Assessment of robustness of proposed strategies against worst scenarios in terms of atmosphere unpredictability:
 - True orbit simulated under the LMD Dust Storm of 2001
- Success Criteria for the tests:
 - AB-THERM-1: No violation of solar array damage curve
 - AB-ORB-1: Orbital lifetime always above 4 days
 - AB-OPER-1: Overall aerobraking duration below 9 months (excluding superior solar conjunction event)

Long Term Validation Campaign: Results

Reference Scenario Tests:

- All success criteria met
- Good overall performance:
 - Duration: 274 days
 - Cost: 148 m/s (about 100 ABMs)

Montecarlo Tests:

- All success criteria met
- Limited dispersion in performance
- Good PTE performance:
 - Prediction errors < 80 seconds

Worst Scenario Tests:

- AB-THERM-1 violations
- More conservative corridor required for dust storm season:
 - New corridor → no violations
 - Performance deterioration:
 - 50 days (duration); 10 m/s (cost)

PERICENTRE HEAT FLUX VS HEAT LOAD FOR REFERENCE SCENARIO

WORST ORBIT HEAT FLUX-HEAT LOAD PER MONTECARLO SIM.

Conclusions and way forward

The RAAS project has permitted to:

- Study the main factors limiting autonomy and robustness:
 - Atmosphere prediction uncertainty, dust storm events
 - Atmosphere scale factor for orbit predictions
- Improve efficiency and robustness of pericentre control:
 - Two-fold guidance approach: Baseline plus Correction ABMs
- Propose and validate new mission operations approaches
- Propose and validate S/C attitude modes and FDIR concepts:
 - Autonomous mode management, safe mode, automatic pop-up
- Develop new tools to validate algorithms and strategies:
 - Mission Analysis Simulator, High Fidelity Analysis Simulator

Future studies should aim at:

- Increasing the TRL of the proposed algorithms and strategies
 - Current TRL for most of technologies is 2-3
 - Onboard algorithms require testing on space qualified computers and additional theoretical research to improve proof-of-concept
 - Ground algorithms and operations strategy must be tested with real mission architectures (ground station, real time effects...)